SMIA (S1), Algèbre 1 Série N° : 2

Pour les exercices 6 et 8 voir : Cours d'algèbre de R. Godement, Réunions et intersetions.

Ex. 1 — Soit $f: X \to Y$ une application. Montrer que :

- 1) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- 2) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- 3) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 4) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$
- 5) $f^{-1}(Y B) = X f^{-1}(B)$

Answer (Ex. 1) — 1) On a $B_1 \cap B_2 \subset B_1$, donc $f^{-1}(B_1 \cap B_2) \subset f^{-1}(B_1)$. De même, $f^{-1}(B_1 \cap B_2) \subset f^{-1}(B_2)$, d'où $f^{-1}(B_1 \cap B_2) \subset f^{-1}(B_1) \cap f^{-1}(B_2)$. Soit $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$, donc $f(x) \in B_1 \cap B_2$, alors $x \in f^{-1}(B_1 \cap B_2)$, d'où l'autre inclusion.

2) Comme pour 1), $f^{-1}(B_1 \cup B_2) \supset f^{-1}(B_1) \cup f^{-1}(B_2)$. Soit $x \in f^{-1}(B_1 \cup B_2)$, alors $f(x) \in B_1 \cap B_2$, alors $f(x) \in B_1 \cap B_2$.

- 2) Comme pour 1), $f^{-1}(B_1 \cup B_2) \supset f^{-1}(B_1) \cup f^{-1}(B_2)$. Soit $x \in f^{-1}(B_1 \cup B_2)$, alors $f(x) \in B_1 \cup B_2$, donc $f(x) \in B_1$ ou $f(x) \in B_2$, par suite $x \in f^{-1}(B_1)$ ou $x \in f^{-1}(B_2)$, d'où $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$, et on obtient l'autre inclusion.
- 3) On a $A_1 \subset A_1 \cup A_2$, donc $f(A_1) \subset f(A_1 \cup A_2)$. De même, $f(A_2) \subset f(A_1 \cup A_2)$, d'où $f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$. Soit $y \in f(A_1 \cup A_2)$, alors y = f(x) où $x \in A_1 \cup A_2$. Donc $y \in f(A_1)$ ou $y \in f(A_2)$. D'où $y \in f(A_1) \cup f(A_2)$, et on obtient l'autre inclusion.
- 4) On a $A_1 \cap A_2 \subset A_1$, alors $f(A_1 \cap A_2) \subset f(A_1)$. De même, $f(A_1 \cap A_2) \subset f(A_2)$. D'où 4).
- 5) Soit $x \in X$, on a

$$x \in f^{-1}(Y - B) \Leftrightarrow f(x) \in Y - B$$
$$\Leftrightarrow f(x) \notin B$$
$$\Leftrightarrow x \notin f^{-1}(B)$$
$$\Leftrightarrow x \in X - f^{-1}(B),$$

d'où 5).

Ex. 2 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est injective.
- b) $f^{-1}(f(A)) = A$ pour toute partie A de X.
- c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ pour toutes parties A_1, A_2 de X.

Answer (Ex. 2) — $a) \Rightarrow b$). Soit A une partie de X. On a toujours (voir les notes de cours) $f^{-1}(f(A)) \supset A$. Montrons l'autre inclusion. Soit $x \in f^{-1}(f(A))$, alors $f(x) \in f(A)$ c'est-à-dire, f(x) = f(x') où $x' \in A$. Puisque f est injective, $x = x' \in A$.

- b) \Rightarrow a). Soient $x, x' \in X$ tels que f(x) = f(x'). On pose $A = \{x'\}$. On a $f(A) = \{f(x')\}$ et $x \in f^{-1}(f(A)) = A$ d'où x = x'.
- $a) \Rightarrow c$). D'après 4) de Ex. 1, On a toujours $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$. Montrons l'autre inclusion. Soit $y \in f(A_1) \cap f(A_2)$, alors $y = f(x_1) = f(x_2)$ où $x_1 \in A_1$ et $x_2 \in A_2$. Puisque f est injective, $x_1 = x_2$, d'où $y \in f(A_1 \cap A_2)$.
- $c) \Rightarrow a$). Soient $x, x' \in X$ tels que f(x) = f(x'). On pose $A_1 = \{x\}$ et $A_2 = \{x'\}$. On a $f(x) = f(x') \in f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2)$. Donc $A_1 \cap A_2 \neq \emptyset$ (car $f(\emptyset) = \emptyset$, voir cours), c'est-à-dire, x = x'.

Ex. 3 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est surjective.
- b) $f(f^{-1}(B)) = B$ pour toute partie B de Y.

Answer (Ex. 3) — $a) \Rightarrow b$). Soit $B \subset Y$. D'après les notes de cours, il suffit de montrer que $f(f^{-1}(B)) \supset B$. Soit $y \in B$, alors il exite $x \in X$ tel que f(x) = y. Donc $x \in f^{-1}(B)$, d'où $y \in f(f^{-1}(B))$.

b) \Rightarrow a). Soit $y \in Y$. On pose $B = \{y\}$. On a $y \in B \subset f(f^{-1}(B))$. Donc y = f(x) pour un certain $x \in X$.

Autre méthode : On prend B = Y, donc $Y = f(f^{-1}(Y)) = f(X)$ (car $f^{-1}(Y) = X$).

Ex. 4 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est injective.
- b) Quelles que soient les applications $g, h: Z \to X$,

$$f \circ g = f \circ h$$
 implique $g = h$.

Answer (Ex. 4) — a) \Rightarrow b). Soient les applications $g, h : Z \to X$, telles que $f \circ g = f \circ h$. Soit $z \in Z$. On a f(g(z)) = f(h(z)) alors g(z) = h(z). D'où g = h. b) \Rightarrow a). Soient $x, x' \in X$ tells que f(x) = f(x'). On prend $Z = \{x\}$ et $g, h : Z \to X$ telles que g(x) = x et g(x) = x'. On a g(x) = x' of g(x) = x' of g(x) = x' et g(x) = x'.

Ex. 5 — Soit $f: X \to Y$ une application. Montrer que les conditions suivantes sont équivalentes :

- a) f est surjective.
- b) Quelles que soient les applications $g, h: Y \to Z$,

$$g \circ f = h \circ f$$
 implique $g = h$.

Answer (Ex. 5) — $a) \Rightarrow b$). Soient $g, h: Y \to Z$ des applications telles que $g \circ f = h \circ f$. Soit $y \in Y$. Alors il existe $x \in X$ tel que f(x) = y. D'où $g(y) = g \circ f(x) = h \circ f(x) = h(y)$. $b) \Rightarrow a$). Soit $g = 1_{f(X)}: Y \to \{0,1\}$ la fonction caractéristique de f(X): g(y) = 1 si $y \in f(X)$, g(y) = 0 si $y \notin f(X)$ (voir les exercices supplémentaires).

Soit $h: Y \to \{0, 1\}$ l'application définie par h(y) = 1 pour tout $y \in Y$. On a $g \circ f = h \circ f$, donc g = h. Or h est la fonction caractéristique de Y. D'où f(X) = Y (car $1_A = 1_B \Rightarrow A = B$) et f est surjective.

Ex. 6 — Soit $(A_i)_{i \in I}$ une famille non vide de parties d'un ensemble X. Montrer que

a)

$$X - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X - A_i).$$

b)

$$X - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X - A_i).$$

Ex. 7 — Soient $(A_i)_{i\in I}$ et $(B_j)_{j\in J}$ deux familles non vides de parties d'un ensemble X. Montrer que

a)

$$(\bigcup_{i \in I} A_i) \bigcap (\bigcup_{j \in J} B_j) = \bigcup_{(i,j) \in I \times J} (A_i \cap B_j).$$

b)

$$(\bigcap_{i\in I} A_i) \bigcup (\bigcap_{j\in J} B_j) = \bigcap_{(i,j)\in I\times J} (A_i\cup B_j).$$

Answer (Ex. 7) — a) On pose $A = \bigcup_{i \in I} A_i$, $B = \bigcup_{j \in J} B_j$, $C = \bigcup_{(i,j) \in I \times J} (A_i \cap B_j)$.

Soit $(i,j) \in I \times J$. On a $A_i \cap B_j \subset A \cap B$. D'où $C \subset A \cap B$. Inversement, soit $x \in A \cap B$, alors il existe $(i_0,j_0) \in I \times J$ tel que $x \in A_{i_0} \cap B_{j_0}$. Par conséquent, $x \in C$, d'où $A \cap B \subset C$. b) On peut la montrer, soit directement comme pour a), soit en utilisant a) et Ex. 6. Pour la seconde méthode, on pose $A' = \bigcup_{i \in I} \mathbb{C}_X A_i$, $B' = \bigcup_{j \in J} \mathbb{C}_X B_j$, $C' = \bigcup_{(i,j) \in I \times J} (\mathbb{C}_X A_i \cap \mathbb{C}_X B_j)$.

D'après a), on a $A' \cap B' = C'$. En passant au complémentaire et en utilisant Ex. 6, on obtient b).

Ex. 8 — Soit $f: X \to Y$ une application.

1) Soit $(A_i)_{i\in I}$ une famille non vide de parties de X. Montrer que

a)

$$f(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f(A_i).$$

b)

$$f(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}f(A_i)$$

et qu'il y a égalité si f est injective.

2) Soit $(B_i)_{i\in J}$ une famille non vide de parties de Y. Montrer que

a')

$$f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j).$$

b')
$$f^{-1}(\bigcap_{j\in J} B_j) = \bigcap_{j\in J} f^{-1}(B_j).$$

Ex. 9 — Soient $f: X \to Y$, $g: Y \to Z$ deux applications, et $h = g \circ f$ l'application composée. Montrer que

- a) Si h est injective, f est injective. Si de plus f est surjective, alors g est injective.
- b) Si h est surjective, g est surjective. Si de plus g est injective, alors f est surjective.

Answer (Ex. 9) — a) On suppose que h est injective. Soient $x, x' \in X$ tels que f(x) = f(x'). Alors h(x) = h(x'). D'où x = x'. Si on an en plus f est surjective, alors f est bijective, et par suite $g = hf^{-1}$ est injective (la composée de deux applications injectives est injective). b) On suppose que h est surjective. Soit $z \in Z$. Il existe $x \in X$ tel que z = h(x) = g(f(x)). D'où g est surjective. Si de plus g est injective, alors g est bijective, et par suite, $f = g^{-1}h$ est surjective (la composée de deux applications surjectives est surjective).

Ex. 10 — Soient $f: X \to Y$, $g: Y \to Z$, $h: Z \to T$ des applications. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h sont bijectives.

Answer (Ex. 10) — D'après Ex. 9, g est surjective, f est injective, h surjective, et g est injective. Donc g est bijective, et par suite, $f = g^{-1} \circ g \circ f$ et $h = h \circ g \circ g^{-1}$ sont bijectives (la composée de deux applications bijectives est bijective).

Ex. 11 — Soient X un ensemble et A, B deux parties de X. On définit l'application

$$f: \mathscr{P}(X) \to \mathscr{P}(A) \times \mathscr{P}(B)$$

par

$$f(Y) = (Y \cap A, Y \cap B)$$

pour tout $Y \subset X$.

À quelle condition doivent satisfaire A et B pour que f soit injective? pour que f soit surjective?

Answer (Ex. 11) — On a $f(\emptyset) = (\emptyset, \emptyset)$, $f(A) = (A, A \cap B)$, $f(B) = (A \cap B, B)$, f(X) = (A, B), $f(A \cap B) = (A \cap B, A \cap B)$ et $f(A \cup B) = (A, B)$.

On suppose que f est injective. Puisque $F(X) = f(A \cup B)$, on a $X = A \cup B$. On va montrer que cette condition est suffisante pour que f soit injective. Soient $Y, Y' \in \mathscr{P}(X)$ tels que f(Y) = f(Y'). Donc $Y \cap A = Y' \cap A$ et $Y' \cap B = Y' \cap B$. D'où

$$Y = Y \cap (A \cup B) = (Y \cap A) \cup (Y \cap B) = (Y' \cap A) \cup (Y' \cap B) = Y' \cap (A \cup B) = Y'.$$

Finalement, f est injective ssi $X = A \cup B$.

On suppose maintenant que f est surjective. Donc il existe $Z \in \mathscr{P}(X)$ tels que $f(Z) = (A, \varnothing)$. Donc $Z \cap A = A$ et $Z \cap B = \varnothing$. Alors $A \subset Z$, et par suite $A \cap B \subset Z \cap B = \varnothing$. D'où $A \cap B = \varnothing$. On suppose maintenant que cette condition est valable. Soient $(A', B') \in \mathscr{P}(A) \times \mathscr{P}(B)$. On a

$$f(A'\cup B')=((A'\cup B')\cap A,(A'\cup B')\cap B)=\big((A'\cap A)\cup (B'\cap A),(A'\cap B)\cup (B'\cap B)\big)=(A',B')$$

car $A' \cap A = A'$, $B' \cap B = B'$, $B' \cap A = A' \cap B = \emptyset$ (car $B' \cap A \subset B \cap A = \emptyset$ et $A' \cap B \subset A \cap B = \emptyset$). Finalement, f est surjective ssi $A \cap B = \emptyset$.